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The nonlinear electromagnetic stirring induced in a hemispheroidal container by the 
axisymmetric discharge of an electric current is investigated. The electric current is 
discharged into the fluid from a circular electrode which is at the centre of the 
equatorial plane of the container, the remaining part of the equatorial plane being 
a free surface. The equations of the problem are solved semi-analytically and results 
are presented for several sets of data. I n  the case of a point electrode when the current 
exceeds a critical value we have velocity breakdown. Here it is shown that, as the 
size of the area through which the current is discharged increases, the intensity of 
the flow field decreases, and thus for a larger electrode a larger amount of current 
can be discharged without velocity breakdown. When, however, the current is 
sufficiently large the solution becomes unstable, and this indicates velocity break- 
down. Finally in an Appendix the solution for the case of a point discharge in a semi- 
infinite fluid is expressed in analytic (series) form. 

1. Introduction 
The motion of the molten metal in a weld pool determines the heat and mass 

transfer in it (Christensen, Davis & Gjermundsen 1965; Apps & Milner 1963) and 
consequently is an important factor in determining the chemical reactions between 
and the fusion of the metals being joined together. The experiments of Woods & Milner 
(1971), Kublanov & Erokhin (1974) and Butsenieks et al. (1976) have demonstrated 
that the fluid motions in the weld pool are primarily caused by electromagnetic forces 
and that the effect of these forces is conducive to the mixing process. A secondary 
cause of these motions is the plasma jet generated in the welding arc (Wienecke 1955 ; 
Milner, Salter & Wilkinson 1960). The theoretical study of these motions has 
attracted the attention of many authors; for example, Lundquist (1969), Shercliff 
(1970), Sozou (1971), Sozou & Pickering (1976) and Atthey (1980). 

The early attempts to understand the role played by the Lorentz force in the 
welding process were concerned with situations in which the fluid extends to infinity 
and the current enters the fluid through a point source (Lundquist 1969; Sozou 1971 ; 
Shercliff 1970). This configuration is, of course, too idealized to successfully describe 
the practical welding situation, and so Sozou & Pickering (1976) considered the case 
where these flows take place in a finite container. They assumed that the container 
was a hemispherical bowl and the current entered the fluid through a point a t  the 
centre of the free surface of the fluid. The flow pattern predicted by the point source 
model is compatible with observations in the weld pool, but the predicted velocity 
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is too large and breaks down when the discharged current J ,  exceeds a certain critical 
value. In practice currents much in excess of the critical value of J ,  are passed through 
the weld pool, and no velocity breakdown occurs. 

The dimensionless parameter K = xJE/27c2v2p plays a prominent role in the 
determination of these flows. Here x ,  v and p denote respectively the magnetic 
permeability, kinematic viscosity and density of the fluid, and J ,  the total current 
discharged in the fluid. The numerator of K is proportional to the electromagnetic 
force exerted on the fluid, and the denominator is a measure of the resistance put 
up by the fluid owing to its viscosity and density. With the parameter K we associate 
a geometrical factor which depends on the shape of the container and the distribution 
of the rotational part of the Lorentz force that drives the flow field. (The irrotational 
part of the Lorentz force is taken up by the fluid pressure and does not contribute 
to the flow field.) For a prescribed configuration the geometrical factor is specified; 
and, when K increases, the electromagnetic force on the fluid and the intensity of the 
flow increase and eventually the flow field breaks down. The quantitative discrepancy 
between theory and the weld-pool observations must be due to the assumed structure 
of the current discharge and the consequent increase in the rotational part of the 
Lorentz force (Sozou 1974). 

Recent experiments by Boyarevich & Shcherbinin (1983) showed that, if the 
experimental arrangement matches the theoretical model, agreement between 
theory and observation concerning the critical value of J, is satisfactory. These 
authors discharged axisymmetrically an electric current J, from a small electrode at  
the centre of the plane end of a hemispherical container filled with mercury. They 
found that when J ,  exceeds 15 A the induced flow develops azimuthal instabilities. 
Boyarevich & Shcherbinin used an external magnetic field to study these instabilities, 
but that field can be produced only by a uniform distribution of magnetic poles 
covering the half of the axis of the container that terminates at  the plane end and 
does not penetrate the hemisphere. 

The theoretical flow patterns associated with the electrically driven flows can be 
made slower and thus quantitatively correlate better with the observed flows in weld 
pools by reducing the rotational part of the Lorentz force acting on the fluid. One 
approach, employed by Andrews & Craine (1978), is to model situations which occur 
in welding by a distribution of sources and sinks situated outside the fluid region. 
They considered the steady axisymmetric slow viscous flow induced in a hemispherical 
container due to various idealized axisymmetric representations of the current 
sources and found that by varying the current distribution within the fluid the general 
flow pattern is qualitatively altered. Atthey improved on the idea of Andrews & 
Craine; he assumed a distribution of current that enabled a large amount of current 
to flow in the direction of the axis of symmetry and also retained the inertia terms 
in the momentum equation. Craine & Weatherill (1980) studied configurations similar 
to those considered by Andrews & Craine and by Atthey, but with the addition of 
a uniform external magnetic field parallel to the pool axis. That configuration is 
associated with meridional flow and azimuthal swirl. 

In order to exclude the effects of the plasma jet, the effects of the current flow 
through the molten metal are sometimes simulated by an electrode touching the 
surface of the pool, e.g. by Kublanov & Erokhin (1974). Sozou & Pickering (1978, 
subsequently referred to as SP) considered a model which resembles that studied by 
Kublanov & Erokhin. These authors investigated the Stokes flow field generated in 
a hemispheroidal container by the axisymmetric discharge of an electric current into 
the fluid through a circular electrode which is situated at  the centre of the equatorial 
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plane of the spheroid. The neglect of the inertial forces in their analysis makes their 
solution valid only for low currents. At high currents the contribution of the nonlinear 
effects is likely to be significant and even cause velocity breakdown, and the terms 
representing the nonlinearities must be retained in the governing equations. It is our 
aim to consider the effects of these nonlinear terms for various electrode sizes in this 
paper. Atthey and Craine & Wetherill did not report a velocity breakdown for the 
models they considered, but this is probably due to the fact that they did not use 
a sufficiently large current. 

Over the years some queries have been raised privately about the breakdown point 
of the original solution constructed by Sozou (1971) concerning the flow field 
generated by a current source. Recently Boyarevich (1981) studied the analytic 
properties of equations associated with the flow field of a current source and various 
boundary conditions by means of matched asymptotic expansions. However, this is 
not necessary for the original case studied by Sozou (1971). The solution constructed 
for that  case can be expressed in terms of power series. This is done in Appendix B, 
and the originally noted velocity breakdown is reconfirmed. 

2. Formulation of the problem 
We consider an oblate axisymmetric hemispheroidal bowl full of an incompressible 

conducting fluid of density p and kinematic viscosity v such that the plane boundary 
of the fluid forms a free surface, except for a circular electrode of radius k whose centre 
is coincident with the centre of the equatorial plane of the hemispheroid. The 
semimajor and semiminor axes of the bowl are a and c ,  respectively. It is convenient 
to use oblate spheroidal coordinates (p ,  5, $), which are related to the cylindrical polar 
coordinates (x, a, $) by 

x = k p C ,  ~ = k ( l - , ~ ~ ) ~ ( e + l ) i ,  $ = $  ( - l < , ~ < l ,  O < ~ < W ,  0 < $ < 2 ~ ) .  

The origin is a t  the centre of the circular electrode, and the positive x-axis points 
into the fluid along the axis of symmetry. The bowl surface is given by 5 = co, 
1 2 p 2 0;  the electrode is described by c = 0, 0 < p < 1 ; and the free surface is 
given by p = 0 , O  < 5 < c0. The parameters a,  c ,  k and c0 are related by a = k ( g +  19, 
c = kCo. Large values of co, say f 9 1 ,  are associated with a small electrode ( a  < k) 
and a nearly spherical container (a /c  z l ) ,  and small values of go,  say c, < 1,  
correspond to a large electrode (a z k) and a relatively shallow container (a  9 c ) .  Note 
that the free surface area is xc2. 

We suppose that the electrode is raised to a certain potential, thus allowing an 
electric current to  flow into the fluid. (The conductivity of the region p > 0 is LT, a 
constant, and the conductivity of the regionp < 0 is assumed zero.) This configuration 
is clearly axisymmetric. We assume that the electromotive force induced by the 
motion of the fluid is negligible. Then the equation of the current lines is given by 
p = constant. If the total current discharged into the fluid is J,, the electrostatic 
potential @ and the current density j are given by 

J ,  cot-lc 
2xkc-r ’ 

@ =  

Figure 1 shows an axial section of the configuration studied for the case co = 1.  
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FIGURE 1. Axial section of the hemispheroidal bowl for the case c0 = 1. The curves show the 
direction of current flow corresponding to the case where the electrode is a t  a fixed potential. The 
dotted lines represent the free surface. 

On integrating the equation V x B = x j ,  where x is the magnetic permeability of 
the medium, we find that the associated magnetic induction B is given by 

The steady momentum equation governing our problem is 

-pvxcur lv  = - V ( p + i p v 2 ) + v p V 2 v + j x B ,  (4) 

where p is the pressure and tt the fluid velocity. I n  view of the axisymmetric nature 
of the problem we may satisfy the equation of continuity by introducing a stream 
function $ such that 

It is convenient to introduce dimensionless variables z and Y, defined by 

where K = xJi/27r2v2p. The surface of the bowl is now given by z = 1 .  
Taking the curl of (4) and using (2), (3) and (5)-(7}, after some algebra we obtain 

where 

The boundary conditions for the solution of (8) are zero velocity on the electrode 
and the surface of the bowl, i.e. a t  z = 0 and z = 1 .  At the free surface, i.e. on p = 0, 
the normal component of v and the shear stress are zero. If Y = Y(p, z )  these 
conditions re,quire that 

W p ,  0) = 0, YJp, 0) = 0, (9), (10) 

Y(p, 1 )  = 0, Y A P ,  1 )  = 0, (11) ,  (12) 

Y(0,z) = 0, Y,,(O, 2 )  = 0. (13) ,  (14) 
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We set 

where 

and Pm is the Legendre polynomial of degree m. Here and in subsequent expressions 
a prime denotes differentiation with respect to  the argument of the function. Since 
P2,+l(0) = 12n+l(0) = Igfi+l(0) = 0, this form of Ysatisfies ( 1 3 )  and ( 1 4 )  automatically, 
and (9)-(12) will be satisfied if 

F,(O) = 0, Fh(0) = 0, Fn(l) = 0, Fh(1) = 0. (17)-(20) 

Note that ( 1 5 )  and (16) imply that on the axis of symmetry ,LA = 1 ,  Y = 0 and v 
(see ( 5 ) )  is finite. 

On substituting (15) in (8) and making use of the equation 

( 1  -p2) I;,+, + 2n(2n + 1 )  I,,+, = 0, 

after some manipulation, we obtain 

{ {(G z2 + 1 ) [ ( z2  + c; y2)  GL - 4zGh] - 2[(2m + 3) (m - 1 )  (G z2 +y2)  
m-1 

+6~~-2IGm3 1 2 m + l - W 1 - ~ ~ ) G m  1k+l 

where 

The functions Gs and the fluid vorticity V x v are connected by the equation 

Gs = ( z 2  + cr ') 3':: - 242s + 1 )  F,. (22) 

m 

The analysis so far, apart from a slight change in notation, is similar to that employed 
by SP. Our equation (21) corresponds to  (24) in the paper by SP, where the nonlinear 
terms represented by the coefficient of K in ( 2 1 )  were neglected. 

If we multiply (21) by In+,(p)/(l -p2 )  and integrate both sides of the resulting 
equation with respect to p over the interval (0, l ) ,  after some algebra we obtain 

a, GL + a2 Gh + a3 G, + a4 GL+l + a5 Gn+, +a, GL-, + a7 Gn-, 

c o r n  

+ K X X [F,(a, + a, G,) +a,, FA G,] = a,,, (24) 

where a,, ..., a7 and a,, are functions o f f ,  n and z ,  and a,, a, and a,, are functions 
of c,, m, n, s and z .  These functions are given in Appendix A. 

m-1 s-1 
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The two solutions associated with the complementary function of (22), say f,,(z) 
and fS2(z), are given by 

f , y 1 ( 4  = (z2+C&2)P;,(f;ozL f&) = (z"f;&2)9;s(Yo4, 

where f , l ( Z ) L 2 ( z ) - L ~ ( ~ ) f s 2 ( ~ )  = 2@s+ 1 )  CC3. (25) 

Here we have used Lamb's (1932, p. 143) notation, that is 

p2,S(t) = ( - )"P,S (it)> q 2 S ( t )  = ( - 
where Q m ( x )  denotes the Legendre function of the second kind of order m. If we 
multiply (22) by fSi (i = 1 ,2 )  and integrate, we obtain 

rz 

r z  

Since F,(O) = Fi(0) = 0 = F,(l) = FL(l), we set b,, = b,, = 0 and 

J;P;.(Co") G,(4 d" = 0, J*: qiJC0 4 @,(4 dx: = 0. (2% (29) 

If we eliminate Fi between (26) and (27) and make use of (25), after some slight 
rearrangement, we obtain 

F&) = C$~",',:t' J: G,W IAJC~ x) q ; s ( ~ o  2) - ~ G , ( C ~  2) q i , ~  41 ax. 

(30) 

Equations (28) and (29) are the boundary conditions for C,. When the functions G, 
are known Y is constructed from (15) and (30). 

The approach adopted here can easily be modified to accommodate the case where 
the solid electrode ( z  = 0, 0 < p < 1)  is replaced by a free surface where the shear 
stress is zero. In  that case the condition YJ0, p) = 0 is replaced by Yzz(O, p)  = 0 and, 
in view of the assumed form of Y, (18) is replaced by FL(0) = 0. Since f,,(O) = 0, 
to  satisfy the conditions F,(O) = F,(l)  = Fi(1) = 0, we set b,, = 0, b,, = 1 and im- 
pose (28). Equation (22) and the conditions F,(O) = F,"(O) = 0 imply that 

G,(O) = 0. 

The equation G,(O) = 0 replaces (29) as one of the boundary conditions of the problem. 
If we then eliminate Fi between (26) and (27) (with b,, = 0, b,, = 1 )  we obtain 

A different current input into the fluid, through z = 0 , O  < p < 1 ,  is also possible. 
A change in the structure of current flow will change the function ul,. The numerical 
solution described in 9§3 and 4 was restricted to  the case of a solid electrode and the 
current density given by (2). 
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3. The numerical method 
It is obvious that (22) and (24) must be solved by an iterative process. First we 

assume that the functions F,(z) are known and solve (24) for the functions G,(z) ; these 
results are then used to obtain a new approximation to F,(z) using (30). This process 
is continued until convergence is obtained; here we assume that there is convergence 
when two successive iterations produced the same output to the third significant 
figure for all G, at all mesh points. The infinite series (15) was truncated at  N terms, 
that is we set F,(z) = G,(z) = 0 for all n > N .  

To solve the set of equations (24) we divided the interval ( 0 , l )  into M equal parts 
and numbered the nodal points from 1 to M + 1 ,  with the point 1 corresponding to  
the point z = 0 and the point M+ 1 corresponding to z = 1.  We used central 
differences to approximate the derivatives in (24). For a specified n (24) was evaluated 
at  the nodal points 2, ..., M ,  thus generating M -  1 linear equations. Equations (28) 
and (29) were then evaluated using the trapezoidal rule, and these contributed two 
more equations giving a total of M + 1  equations, which were solved for all the 
functions 

G,(z) ( n  = 1,2,3,  ..., N ) .  

The general procedure adopted for constructing the solution is as follows. For a 
given c, we solved the linear problem, where the inertia terms in the momentum 
equation are ignored, that is we set a, = a, = a,, = 0. It may be noted that an 
iterative process is not needed when the flow field is linear. We then prescribed a 
relatively low value to K and solved the nonlinear problem iteratively, using as the 
initial approximation to F,(z) the values obtained for the linear problem. This 
solution was stored in a file and used as a first approximation for computing a solution 
for a higher value of K .  The process was repeated with an increased value of K ,  using 
as initial approximations to F,(z) for the higher K the values corresponding to  the 
last I<. 

For relatively low K ,  depending on c,, the process described here converges rapidly, 
but as K increases more iterations are required for convergence, and eventually a 
stage is reached where convergence is practically impossible, even if we use a small 
relaxation factor. Examination of our computer output showed that, excepting the 
endpoints, F,(z) > 0 and, for n =I= 1, F,(z) may change sign. In the linear case 
F,(z) 9 IF,(z)I. As K increases, the amplitude of F,(z) decreases and, in general, that 
of F,(z) increases. This implies that when K increases sufficiently we must increase 
the number of terms N used in the series representation for Y. Gradually IF,(z)l and 
then IF,(z)l and so on exceed F,(z) for some z ,  and eventually the system of equations 
set up becomes unstable. The numerical instability starts near the origin, where the 
rate of decrease of F,, as K increases, is maximum. The increase in the amplitude of 
F,(z) for n =I= 1 and the instability indicate that, when K is sufficiently large for a 
particular c,, the series (15) diverges, that is, we have velocity breakdown as originally 
suggested by Sozou (1971) for the case of a point electrode in a semi-infinite fluid. 
In practice we fixed co, determined N(&J and carried out computations for increasing 
values of K.  The results, which are presented in $4, refer to cases where 

For a given Q, when (31) was violated or instability occurred we terminated our 
computations and did not attempt to establish an upper limit (which is difficult) to 
K .  For f = 100, for instance, we find that (31) is satisfied when K < 80, but when 
K = 120 the system of equations is unstable. The results presented for co = 100 refer 
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to  K < 80. Since IP,(,u)l < 1,  (15) and (16) indicate that when (31) is satisfied the 
approximation of Y by the first N terms of (15) gives a reasonably accurate 
representation for the stream function. 

4. Results and discussion 
We carried out computations for go = 0.5, 1 ,  10 and 100. To start with we looked 

into the problem of the number of terms to  be retained in the series for Y in order 
to accurately evaluate the flow field. We found that the larger the value of Q the 
more rapid is the decrease in the magnitude of F,(z) as n increases. Thus, for a certain 
accuracy in the evaluation of Y fewer terms are needed as co increases. After some 
test trials we decided to set N = 12 for co = 0.5, N = 7 for c,, = 1 and for 5, = 10 and 
N = 5 for go = 100. We chose a steplength 6 z  = 0.025 for all go considered. Some of 
our results are shown in tables 1 and 2 and in figures 2 4 .  

Since IL12+l( 1 )  = - 1 ,  (5)-(7) and (15) imply that the velocity u along the axis ,u = 1 
is given by 

Tables 1 and 2 show values of u for the cases co = 100, 10, 1 and 0.5 and for various 
values of K.  The linear case refers to the Stokes-flow problem where the inertia terms 
are ignored, that is to cases where the coefficient of K in (24) is set equal to zero. The 
corresponding Stokes-flow problem was also considered by SP, who used a lower N 
and a slightly different procedure to  evaluate P%(z). Our u for the linear case is a little 
larger near z = 0 and a little smaller near z = 1 than the corresponding u obtained 
by SP. 

I n  the discussion presented below it  is convenient to assume that the depth c of 
the container is kept constant and express the various scale lengths in terms of c and 
the parameter co. We recall that  c = kco and the free surface area is n(a2 - k2) = nc2. 
The maximum value of $, say @,, associated with a particular set of data is a measure 
of the overall intensity of the flow field. Inspection of the data of figures 2 and 4 shows 
that, in the Stokes-flow regime when co decreases from 100 to 0.5, 4, decreases by 
more than two orders of magnitude (from about 6 x 10-3K/vc to about iO-5K/uc). 
For a particular K, the change in the intensity of the flow, as co varies, depends on 
the following reasons. 

(i) The value of the parameter R = curved surface/volume, of the hemispheroid. 
Since the curved surface due to  frictional effects slows down v ,  an increase in R must 
correspond to a reduction in the intensity of the flow. It can be shown that, when 
co decreases from 100 to  0.5, R increases by a factor of 1.5 and this cannot be the 
main cause for the decrease in @,, for the Stokes-flow problem, by a factor of nearly 
three orders of magnitude. 

(ii) The size of the area of the electrode surface ncz<;z which, owing to  frictional 
effects, slows down the overall velocity field. An indication of the frictional effects 
of the electrode is provided by the configurations considered in Appendix B, that is 
by the flow fields generated by an electric discharge in a semi-infinite fluid from a 
point of the plane bounding the fluid. When the boundary is a free surface the 
nonlinear flow breaks down a t  K = 94.1, and when the free surface is replaced by a 
wall (which slows down the velocity field) the flow breaks down a t  K = 300.1. It can 
also be shown that, in the corresponding Stokes-flow regime, 

vK(0.510g 2-0.25) 0 . 0 9 7 ~ K  
U =  x 

r r 
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z 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

linear 
case 

9.11, - 1  
4.30, - 1 
2.57, - 1 
1.63, -1 
1.03, - 1 
6.19, -2 
3.32, -2 
1.43, -2 
3.50, -3 

5, = 100 Co = 10 

linear 
K = 40 K = 80 case K = 5 0 0  K = 1000 

1.32,O 
6.42, - 1 
4.01, - 1  
2.65, -1 
1.73, - 1  
1.07, - 1 
5.87, -2 
2.58, -2 
6.48, -3 

1.50,O 
7.78, - 1 
5.27, - 1 
3.82, - 1 
2.76, - 1 
1.87, - 1 
1.12, - 1 
5.30, -1  
1.42, -2 

1.40, -1  
1.67, -1 
1.34, - 1 
9.73, -2 
6.60, -2 
4.13, -2 
2.28, -2 
9.96, -3 
2.47, -3 

1.06, - 1 
1.49, - 1 
1.46, - 1 
1.34, -2 
1.19, - 1  
1 .oo, - 1 
7.69, -2 
4.72, -2 
1.58, -2 

TABLE 1. Values of.cu/vK for some <,, and K 

8.65, -2 
1.23, - 1 
1.24, - 1 
1.17, -1 
1.08, - 1 
9.60, -2 
8.03, -2 
5.74, -2 
2.43, -2 

2 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

linear 
case 

7.82, -5 
2.45, -4  
4.11, -4 
5.18, -4 
5.34, -4 
4.64, -4 
3.33, -4 
1.81, -4 
5.40, -5 

K = 5 x lo4 

3.35, -5 
1.15, -4 
2.14, -4 
3.00, -4 
3.51, -4 
3.53, -4 
2.99, -4 
1.92, -4 
6.57, -5 

K = lo6 

1.89, -5 
6.72, -5 
1.29, -4 
1.87, -4 
2.24, -4 
2.32, -4 
2.06, -4 
1.40, -4 
5.04, -5 

linear 
case 

1.88, -6 
6.09, -6 
1.07, -5 
1.43, -5 
1.57, -5 
1.45, -5 
1.11, -5 
6.44, -6 
2.02, -6 

K = 105 K = 10' 

1.74, -6 9.20, -7 
5.71, -6 3.19, -6 
1.02, -5 6.03, -6 
1.38, -5 8.66, -6 
1.54, -5 1.03, -5 
1.45, -5 1.04, -5 
1.13, -5 8.72, -6 
6.58, -6 5.47, -6 
2.08, -6 1.84, -6 

TABLE 2. Values of culvK for some 5, and K 

when the boundary is a free surface, and when the boundary is a wall 

vK( 1.5 log 2 - 1) 0.040~K 
u =  N 9 

r r 

where r is the distance from the discharge. Thus when the free surface is replaced 
by a wall u is reduced by a factor z 2.4. The data of tables 1 and 2 show that, in 
the linear regime when co decreases from 100 to 0.5, u decreases by several orders 
of magnitude, and therefore the frictional effects of the electrode cannot be the main 
cause in the reduction of u (as co is reduced from 100 to 0.5). 

(iii) The agent generating the velocity field, that is the rotationality of the Lorentz 
force given by 

The mean value of' V x (i x B) over the volume of the fluid is 
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Clearly (33)  and (34) are decreasing functions of [,, and this is the main reason for 
the reduction in the intensity of the flow field as c0 decreases from 100 to 0.5. The 
reduction in u as 5, decreases, that  is as the electrode radius k = c/C0 increases, is in 
qualitative agreement with experiment, for example by Woods & Milner (1971). They 
passed various electric currents between two electrodes having diameters 3 mm and 
15 mm respectively, which were immersed in a mercury bath. Along the axis the fluid 
was moving from the smaller to the larger electrode. When they repeated the 
experiment with the diameter of the smaller electrode doubled the observed 
maximum axial velocity at any given current was about halved. We note that a t  a 
given z the upper limit of u, for a particular K ,  is associated with the case of a point 
electrode (in a hemispherical container). I n  the case of the Stokes-flow regime for 
z 0.1, the u corresponding to the point electrode (Sozou & Pickering 1976) is larger 
than the u corresponding to  the case 5, = 100 by less than 5 yo. 

We also note that, when c0 = 1 or co = 0.5, that  is when the radius of the electrode 
k is comparable to the depth c of the container, the maximum value of u occurs 
approximately halfway up the axis (around z = 0.5) but when co increases (and k 
decreases) the value of z where u becomes maximum decreases. Indeed when <,+cc 
and k --f 0, u becomes infinite at the origin. The position of the maximum ofu  for small 
k is in qualitative agreement with the experiments of Wienecke (1955) and Butsenieks 
et al. (1976). Wienecke determined the velocity field induced by a 200 A carbon arc. 
Along the axis of symmetry the flow field was directed from the small cathode to the 
larger anode. The observed maximum value of u was close to the cathode and exceeded 
300 m s-l. The values of u a t  1.5, 2 and 2.5 ern from the cathode were 240, 180 and 
120 m s-l, respectively, and near the anode u was about 10 m s-l. Butsenieks el al. 
studied the axisymmetric fluid motions generated in a closed cylindrical container 
filled with mercury. The height and radius of the container were both 15 em, and the 
radii of the electrodes, which were attached to the plane ends of the cylinder, were 
75 mm and 6 mm respectively. These authors noted that for the currents used u was 
proportional to Jt and its maximum value occurred very close to the smaller 
electrode. (Their diagram 3 ( a )  indicates that the maximum value of u occurs a t  a 
distance from the smaller electrode approximately equal to its radius.) 

The effect of go on the nonlinear u can be seen by considering the data for the two 
extreme values of 5, shown in tables 1 and 2, namely 5, = 100 and 5, = 0.5. It is 
evident from table 1 that  when yo = 100, that  is when the electrode size is small as 
K increases, u grows a t  a faster rate than K,  especially near the boundary z = 1 .  The 
data of table 2 show that when 5, = 0.5, that  is when the electrode size is large, u 
grows at a slower rate than K ,  except near the boundary z = 1, where initially u grows 
a little faster than K,  but a t  sufficiently high K the growth of u is slower than that 
of K everywhere. As one might expect when {, = 10 or co = 1 the behaviour of u, 
as K increases, lies between that for the two extreme cases of Q = 100 and c0 = 0.5. 
When 5, = 10, for instance, as K increases, u /K  decreases near z = 0 and increases 
near z = 1. The behaviour of u for the case co = 10 is qualitatively similar to that 
found by Atthey (1980, his table I), though he considered a model different from the 
one employed here. 

Details of the structure of the velocity fields for the cases co = 100, 1 and 0.5 
respectively are shown in figures 2, 3 and 4. The asterisk shows the position of Pm, 
the maximum value of +, and we found that as K increases the position of +,,, is 
pushed deeper into the container for all co considered. The quantity 27v,!rrn represents 
the total volume flow generated by the discharge and is a measure of the overall 
intensity of the respective now field. For the case <, = 100, that  is for the case of a 

- 
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FIGURE 2. Meridional section of the flow field for the case c0 = 100: (a )  linear case; (b )  K = 80. The 
numbers on the curves are values of 104$/vcK. The * shows the position where @ is maximum. 
The broken curves separate the regions of oppositely directed (azimuthal) vorticity. The dotted 
lines represent the free surface. 

small electrode, @.,/K increases as K increases, as evident from figure 2 .  This is in 
agreement with the case of a point electrode (in a hemispherical container) that was 
considered by Sozou & Pickering (1976). Our computations for 6, = 1, up to K = lo5, 
and for co = 0.5, up to K = lo6, show that @ J K  is approximately a constant. Details 
of our computer output reveal that  the flow fields for c0 = 1 and for 5, = 0.5 are 
practically linear up to K = 5 x lo3 and K = 5 x lo4 respectively, but the flow fields 
for co = 1, K = lo5 and go = 0.5, K = lo6, as might be inferred from streamlines of 
figures 3 and 4 and the data of table 2 ,  are nonlinear. For co = 1 we also constructed 
a solution for K = 5 x lo5, but that  solution does not quite satisfy the condition 
F,(z) % IP,(z)l for all z. For some z, Fl was only slightly larger than 21F,I. Also IF3(z)l 
was comparable to Fl(z)  and, for z > 0.87, F,(z) > Fl(z). This suggests that  for the 
case c0 = 1, K = 5 x lo5, for an accurate representation of @, an N higher than 7 
should be used and indicates that  for c0 = 1 when K is 5 x lo5 i t  is close to  the limiting 
value beyofid which the series (15) diverges. Also computations for co = 0.5 with a 
steplength 6 z  = 0.05 show that the case K = 2 x lo6 will converge to a solution such 
that Fl(z) % IE;,(z)l, but the case K = 4 x lo6 is unstable and will not converge. When 
c,, = 10, k m / K  is 0.0040 for the linear problem and, when K = 500 and 1000, +,/K 
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FIQURE 3. Meridional section of the flow field for the case 5, = 1 : (a )  linear case; (b )  K = lo5. The 
numbers on the curves are values of 106$/vcK. The * shows the position where 21. is maximum. 
The broken curves separate the regions of oppositely directed (azimuthal) vorticity. The dotted 
lines represent the free surface. 

is 0.0034 and 0.0027 respectively; that  is, as K increases, the parameter $.,/K does 
not follow the pattern that one might expect from its behaviour for c0 = 100, 1 and 
0.5. For co = 10, as K increases, the behaviour of $ J K ,  like that of u mentioned 
earlier, is qualitatively similar to that noted by Atthey, who employed a model 
different from that used here. 

The vorticity, given by (23), is azimuthal, and in the absence of solid boundaries, 
for the type of discharge considered here where the electric current diverges from a 
base at the plane boundary, i t  is in the positive $-direction. The hemispheroid and 
electrode surfaces induce vorticity in the negative @-direction and thus decrease the 
intensity of the flow field. The total vorticity near these surfaces is directed in the 
negative @-direction, and in the intermediate region it is directed in the opposite sense. 
The broken curves of figures 2 4  separate the regions of oppositely directed vorticity. 
It is evident from these figures that, for a particular co, as K increases the intermediate 
region, where the vorticity is directed in the positive $-sense, undergoes an overall 
contraction near the electrode and overall expansion near the surface of the container. 

SP, using a different procedure for computing F,(z), found that, when co < 0.65, 
vortices develop at the electrode rim. Our method here did not show up these vortices. 
When one of us (0.0. A.) used a slightly different procedure for the evaluation of F,(z), 
these vortices were present ; but, as K and the nonlinearities of the problem increase, 
the vortices become smaller and eventually disappear. However, owing to an 
oversight that program has been destroyed. It is probable that the vortices are there 
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FIGURE 4. Meridional section of the flow field for the case = 0.5: (a) linear case; (b) K = 10’. The 
numbers on the curves are values of 10’$/vcK. The * shows the position where $ is maximum. 
The broken curves separate the regions of oppositely directed (azimuthal) vorticity. The dotted 
lines represent the free surface. 

and their detection depends on the refinement and accuracy of the method used to 
evaluate F%(z).  

From the discussion so far it is evident that the geometry of the discharged current 
plays a major role in the quantitative determination of the velocity field. Indeed, for 
a specified container, by adjusting the size of the electrode (that is, the structure of 
the discharge), we can, for the same current and fluid, generate velocities that differ 
by several orders of magnitude. Therefore we cannot expect quantitative agreement 
between the experimental results and those of the above analysis, since, invariably, 
the geometry of the experiments conducted is different from that of the model used 
here. The results presented here, however, like those of previous studies, are in 
qualitative agreement with observation and demonstrate the importance of the 
structure of the discharge. Nevertheless, it would be instructive to insert in our 
parameters typical values of the data used in experimental and practical applications. 
In  SI units x = 4n x kg m sP2 A+ and for steel welding v = 10+ m2 s-l, 
p = 8 x lo3 kg m-3. Thus 4 = 0.126K A2, and, when J, = 100 A, K = 8 x lo4. The 
case 5, = 1 of table 2 suggests that it is reasonable to assume that, for this K ,  the 
maximum value of cu/vK z 3 x lop4. For a weld pool corresponding to c = 0.0025 m, 
u z 0.01 m s-l. If the electrode size is smaller than c,  u will be larger and vice versa. 
For mercury v = 1.1 x p z 1.4 x lo4 and thus J i  N 0.0026K A2. If J ,  = 100 A 
then K = 4 x lo6. According to our computations there is velocity breakdown for this 
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case unless k > 2c, that  is unless the container is very shallow. It may be of some 
relevance that the flow field observed by Woods & Milner (1971) in a mercury bath 
was turbulent even for currents of 50 A. 

The analysis presented here is based on the assumption that the free surface is flat 
and thus the solution constructed is valid provided that the deviation of the free 
surface from the flat position is small. For the Stokes-flow problem the maximum 
deviation of the free surface can be worked out by the technique employed by SP, 
and i t  can be shown that for a weld pool of 2.5 mm it  is small. Calculation of the 
deformation for the nonlinear problem is rather involved and has not been pursued, 
but, according to estimates by Craine & Weatherill (1980), the maximum deformation 
for this case, for the sort of currents considered here, is less than 0 . 1 ~ .  

Appendix A 
The functions a,, . . . , a,, mentioned in $2 are defined as follows : 

a, = z2+gC2 ( G z 2  +8n2+4n-3) , a 2 = -  2z(G z2+  1) 
2n(2n+1) 4n+ l  n(2n+ 1) (4n+ 1 ) ’  

(n- 1) (2n + 3) G z2 - 2 (8n2 + 4% - 3) (2n2 + n + 2) - 3 - a3 = - 
n(2n+ 1) (4n+ 1) n(2n+ l ) a (n )  

4n2 + 18n+ 20 z2 + g;2 
a5 = - , a,=- 

a(n+f)’ 4% +a, a( n - $) ’ 

, 

z2 + g;2 
a4 = ___ 

4n2- 14n+ 12 
a = -  , a, = (5~z2+1)c1+c2, 

7 a(n-+) 

(C z2+ 1 )a,, = - zp2n(o) (c; 24  - 2G z2 

(n+ 1) (2%- 1) 2n(2n+ 1) 

6 i +(n+ 1) (n+2) (2%-1) (2n-3) 

where a(n) = (4%-1)(4n+1)(4n+3), 
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Appendix B 
The axisymmetric flow field generated by the discharge of an electric current J ,  

in a semi-infinite fluid from a point a t  the plane interface of the fluid is given by (Sozou 
1971) 

k = vrg(p), (B 1) 

where 

, (B 3) 
Ku[ap2 + b + c - (1  +p)' log (1 +p)] 

U" = 
4( 1 -p2)2 

K = xJ2,/2n2v2p, and a ,  b and c are constants. In  this formulation spherical polars 
( r ,  8,d)  are used and the origin is a t  the current source. The plane boundary of the 
fluid is given by I9 = frc, the axis I9 = 0 is directed into the fluid and p = cos 8.  

When the plane boundary is a solid plate, where t, = 0 (Sozou 1971), the constants 
a, b and c are given by 

a = 2, b = 4log2-2, c = 0, 

and when the plane boundary is a free surface, where v is tangential and the shear 
stress is zero (Sozou & Pickering 1976), the constants take the values 

a = f+2log2, b = 1 ,  c = -$+2log2 

The solution of (B 3) is subject to the conditions u'(0) = 0 and u(0) = constant, say 

Equation (B 3) was solved numerically (Sozou 1971 ; Sozou & Pickering 1976) by 
marching forward from p = 0 to p = 1 .  It was found that when K exceeds Kcrit, where 
Kcrit is a critical value, u has zeros in the range 0 < p < 1 and thus @ and v become 
infinite. The solutions associated with K > Kcrit are not physically meaningful. 

The solution of (B 3) can also be constructed in terms of power series. The 
coefficient of u on the right-hand side of (B 3) can be expanded as a power series about 
the point p = 1 ; this expansion is 

u(0) = 1.  

rn 

X an(l-p)n, 
n-o 

where 

where C = 1 - 2 log 2 when the plane boundary is a solid plate and C = 2 log 2 - 2 when 
the plane boundary is a free surface. It can then be shown that the two solutions, 
say u, and u2, of (B 3) are given by 

co m 
~1 = X bn(l-p)n, ~2 = X c , ( ~ - , u ) ~ ,  (B 4), (B 5 )  

n=o n=1 

where b, = 1 ,  b, = 0,  c ,  = 1 ,  c2 = 0 and the remaining bs and cs are given by 

1 
n(n- 1 )  b, = ____ (a, bnP2 + a, bnP3 + . . . 

1 
n(n- 1 )  en = ~ (a, en+ + a, cnP3 + . . . + an+ c l ) .  
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We have computed several coefficients bn and cn for values of K up to 5000, and 
our computations indicate that,  in the range 0 < p < 1 ,  u1 and u2 converge for all 
K .  As K increases, the number of terms needed in order to obtain an accurate 
representation for u, and u2 increases slowly, but for values of K up to  Kcrit a 
moderate number of terms provides a reasonably accurate evaluation for u1 and u2. 
(When K z Kcrit, b,, and c, ,  are 0(10-4), b,, and c16 are 0(10-5) or less, and, for n 2 16, 
lba+1/bnl, Icn+1/cnl < 0.6.) 

If we set 
u = A,u,+u,, (B 6) 

the condition u'(0) = 0 implies A, = -u;(O)/u;(O). Our computations showed that, for 
K < Kcrit, A ,  > 0, and, as K increases, A ,  decreases; Kcrit is the value of K that  
satisfies the condition A, = uL(0) = 0. Since u - r  = - v g ' / r ,  (B 2) and (B 4)-(B 6) 
imply that, when A ,  = 0, v is infinite on p = 1. As with the numerically constructed 
solutions we find that Kcrit z 300.1 when the plane p = 0 is a solid plate, and 
Kcrit x 94.1 when the plane p = 0 is a free surface. When K > Kcrit, u has zeros in 
the range 0 < p < 1 ,  i.e. @ and v have singularities and the behaviour of the solution 
as K increases gradually beyond Kcrit is exactly as described by Sozou (1971). 
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